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The dynamic instability of a spinning lead screw in contact with a screw nut is

investigated analytically. The lead screw is modeled as a circular beam vibrating in

transverse and torsion direction. The contact kinematics between the lead screw and

the nut is described on the contact threads in the lead screw. The onset of squeak noise

that the transverse vibration modes can generate squeak noise in the lead screw system.

It is highlighted that squeak noise can be controlled by system design parameters in

such a manner that the squeak propensity is dependent on rotation speed, screw radius,

axial load, contact location, and so on.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Lead screw system is one of typical mechanical parts in industry. It converts rotating to translating motion by contact
forces on the threads in the lead screw and the nut. Friction force during operation may cause the friction-induced
vibrations generating squeak noise. For example, noise problem in the lead screw components of the automotive seat
system has been often and consistently claimed in the field. Olofsson et al. [1] experimentally investigated the squeak
noise of the lead screw system and concluded that the transverse vibration is the squeak mode. Also, they found that the
squeak propensity is highly dependent on the location of the nut on the lead screw. Gallina et al. [2] used a 2DOF model for
describing the self-excited vibration in the screw-nut system and showed that the moment of inertia is one of the key
system parameters in controlling squeak noise. Vahid et al. [3] studied on squeak noise induced by the torsion mode of the
rigid lead screw system by using a 4DOF lumped-mass model. Their results showed that rotation speed and axial load
influences squeak propensity. These findings in the literature give valuable insight on squeak noise problem in the lead
screw-nut system. However, these simplified lumped-mass models have limitation on investigating squeak problems.
Nevertheless, the more accurate continuous model has not been developed yet.

The friction-induced noise has been one popular topic in the field of vibration and acoustics that is broadly summarized
in [4]. Akay [5] presented the various examples of friction noise and the corresponding analytical or experimental results in
his review article. Most of all, the major application exhibiting friction-induced noise problem is disc brake squeal. Many
researchers and engineers in academia and industry have investigated for several decades. Broad and valuable information
on friction-induced noise mechanisms has been accumulated in this single topic as described in the review articles [6–7].
Some of detailed mechanisms associated with disc brake systems are well described in the series of articles [8–15]. In the
brake squeal modeling, the rotation and vibration of the disc are incorporated in the friction-engaged equations of motion
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by describing the contact kinematics of a rotating disc in contact with two stationary pads in the mathematical and
numerical manners. The eigensolutions through the linearization about the steady-sliding provide the onset of squeal with
respect to system parameters. Mode-coupling [8–9], gyroscopic/negative friction slope destabilization [11,12], moving
load effects [14], follower force [15] and modal damping difference [11] are found to be the potential sources of squeal
vibrations. Experimental investigation [16] has been also conducted to validate the mode lock-in mechanism in relation to
brake squeal. It must be noted that these findings are not limited to the disc brake squeal, but extended to the general
friction-induced noise.

In this paper, the modeling methodology of a disc brake model is applied to the other practical problem: lead screw
squeak. The contact forces are defined on the thread of the rotating lead screw in contact with a nut. The Coulomb’s friction
law with a nonlinear friction-velocity curve is applied on the frictional contact model. From the assumed modes method
and the linearization process, the linear equations of motion of the screw squeak model are derived. The eigensensitivity
analysis associated with several design parameters are conducted in order to provide system design perspective for squeak
reduction in the lead screw system.

2. Derivation of equations of motion

The lead screw system is composed of a uniform spinning circular beam in contact with a nut as shown in Fig. 1.
The lead screw has an effective radius (R) and a screw helix angle of a square thread (b). It is subject to the hinged
boundary condition at the both ends in the transverse direction. Also, the torsional motion of the lead screw is assumed to
be clamped at the one end and free at the other end. This may correspond to a motor drive and free bearing in the motor
drive system. The mating part of the lead screw is a nut with a length (b) and its location is denoted by (zo). The spinning
speed (O) generates contact forces on the contact between the threads of the screw and nut, resulting in the axial motion of
the lead screw as shown in Fig. 2. The normal stress (No) on the contact thread between the lead screw and nut is assumed
to be uniform over the contact. It is assumed that the nut is floating in the transverse direction and nut material is much
softer than the lead screw material so that the clamping effect of the nut is neglected in this analysis.

The shearing effects are neglected so that the Bernoulli–Euler beam theory is applied in the analysis [17]. Therefore,
the displacement vector of a position B is described in the reference frame (X,Y,Z) such that:

rB ¼ rAþrB=A, (1)

rB=A ¼ rerþzkþuiþvjþrxey, (2)
Fig. 1. Configuration of lead screw system.

Fig. 2. Translation in the axial direction.
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Fig. 3. Position and displacement vectors: (a) relative position; (b) components of displacement.
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where rA represents the displacement of the undeformed centre of the lead screw in the axial direction and where u and v

are the transverse deflection in x and y directions, and x is the torsional deflection (Fig. 3). The velocity vector of a position
B is the derivative of Eq. (1) in time:

VB ¼ VAþð_rB=AÞxyzþx� rB=A, (3)

where

VA ¼ RO tanbk, (4)

x¼Ok: (5)

The axial load Fz is assumed to be known so that the normal stress on the thread No is derived from:

Fz ¼

Z
Ac

f/No,�kSþ/mNoes,�kSgdA, (6)

where Ac stands for the contact area, / � , �S is the inner product between two vectors and

No ¼�Noen, (7)

en ¼�sinbeyþcosbk: (8)

By the assumption of uniform contact over the square thread with the height h, Eq. (6) reduces to:

No ¼
Fz

hRað1þm tanbÞ
, (9)

where a is total angle in radians of the thread in contact with the nut.
The friction force per unit area on the thread of the lead screw is obtained from Coulomb’s law of friction as:

f ¼�m � No �
Vc

jVcj
, (10)

where the sliding velocity at the contact Vc is the velocity when the position B is located at the contact region such that:

Vc ¼ VBðr¼ R,zorzrzoþbÞ: (11)

Here, the friction curve with the negative friction slope [11–12] is applied in the analysis as:

m¼ mkþðms�mkÞ � expð�djVcjÞ, (12)

where ms, mk and d are the control parameters determining the magnitude and the slope of the friction coefficient.
The corresponding virtual work by contact forces is obtained from:

dWc ¼

Z
Ac

/fþNo,ducSdA, (13)

where uc is the deflection vector at a contact location given by:

uc ¼ uiþvjþRxey: (14)

The potential energy and the homogeneous part of the kinetic energy and of the lead screw are described as:

U ¼
1

2
EIxx

Z L

0
u
002 dzþ

1

2
EIyy

Z L

0
v
002 dzþ

1

2
GIzz

Z L

0
x
002 dz, (15)

and

T ¼

Z L

0

Z 2p

0

Z R

0
ðdTÞr dr dydz, (16)
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where EIxx, EIyy, GIzz are the bending and torsion rigidity in YZ, XZ and XY planes, respectively, and where

dT ¼
r
2
ð _u�Ov�rOx cosy�r _x sin yÞ2þð _vþOu�rOx sinyþr _x cosyÞ2
n o

: (17)

By using the assumed modes method [8–13], the discretized equations of motion for the lead screw subject to friction on
the thread are derived as:

d

dt

@ðT�UÞ

@ _qm

� �
�
@ðT�UÞ

@qm
¼
XN

n ¼ 1

QmnðqnÞ, m¼ 1, . . . ,N, (18)

where N is the number of the truncated modes of the lead screw including the transverse and torsion modes and where the
modal coordinates and forces are:

q¼ fq1 q2 � � � qNg, (19)

dWc �
XN

m ¼ 1

XN

n ¼ 1

QmnðqnÞ � dqm: (20)

Here Qmn is the generalized force that produces the system matrices, (A.3)–(A.8) of Appendix A by the linear process.
The trial functions used in the above assumed modes model are the eigenmodes of the bending and torsion vibration of

the uniform beam subject to the given boundary conditions:

uðz,tÞffi
XN

n ¼ 1

Fx
nðzÞ � qnðtÞ, (21)

vðz,tÞffi
XN

n ¼ 1

Fy
nðzÞ � qnðtÞ, (22)

xðz,tÞffi
XN

n ¼ 1

Fy
nðzÞ � qnðtÞ, (23)

where the mass-normalized mode shape functions are:

Fx
nðzÞ ¼

1ffiffiffi
3
p

R

ffiffiffiffiffiffiffiffiffi
2

rpL

s
sin

npz

L

� �
for transverse mode in x-direction, otherwise, 0, (24)

Fy
nðzÞ ¼

1ffiffiffi
3
p

R

ffiffiffiffiffiffiffiffiffi
2

rpL

s
sin

npz

L

� �
for transverse mode in y-direction, otherwise, 0, (25)

Fy
nðzÞ ¼

1ffiffiffi
3
p

R

ffiffiffiffiffiffiffiffiffi
2

rpL

s
sin
ð2n�1Þpz

2L

� �
for torsion mode, otherwise, 0, (26)

It should be noted that z in the mode shape functions of Eqs. (24)–(26) is equivalent to ðR tanbÞy for the integration of the
mode shape function over the contact in Eq. (13) and Eqs. (A.3)–(A.8) of Appendix A.

By linearizing the nonlinear equations of motion (18) at the steady-sliding state and including the modal damping
intrinsic to the system, the linearized equations take the form:

€qþðCþGþW3þW4þW5 _q Þ _qþð½o2��O2IþW1þW2þW5qÞq¼ 0, (27)

where [o]2 is the natural frequency matrix of the lead screw component and the other system matrices are described in
Appendix A. Substituting qðtÞ ¼Aelt into Eq. (27) and solving Re(l) and Im(l) of the characteristic equation will determine
the onset of dynamic instability for ReðlÞ40 and Im(l)a0, where l is the eigenvalues of the friction-engaged system.

3. Numerical results

The modal analysis and stability results will be obtained from the prescribed boundary conditions, dimensions and the
material properties of the lead screw system for an automotive seat system as summarized in Table 1. The natural
frequencies and the corresponding mode shapes are described in Table 2, where each of bending modes is the pair mode in
the transverse direction. Eighteen eigenmodes (N=18) including 12 bending and 6 torsion modes are found to provide
convergent stability results and used for the subsequent analysis. The velocity-dependent friction coefficient is selected
from the data presented in [3], where the control parameters of friction coefficient are ðms,mk,dÞ ¼ ð0:25,0:2,10Þ (Fig. 4).

For a preliminary stability analysis, the real and imaginary parts of the eigenvalues of the system modes are traced with
the variation of rotation speed. The stability analysis is restricted to the subcritical speed throughout the paper. Fig. 5
illustrates that the real part of each mode varies with respect to rotation speed. Some of real part loci exist in the region of
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Table 1
Nominal values of system parameters.

Parameter Symbol Value

Effective radius R 5 mm

Length of lead L 300 mm

Height of thread h 1 mm

Screw helix angle b 51

Contact location zo 150 mm

Contact length b 60 mm

Young’s modulus E 207 GPa

Shear modulus G 79.3 GPa

Density r 7820 kg m�3

Axial load Fz 200 N

Modal damping coefficient xn 3.0�10�3

Table 2
Natural frequencies of the uncoupled lead screw.

n 1,2 3,4 5,6 7 8,9 10,11 12 13,14

(Hz) 224 898 2020 2654 3592 5612 7961 8082

Mode 1st B 2nd B 3rd B 1st T 4th B 5th B 2nd T 6th B

B: bending mode, T: torsion mode.

Fig. 5. Squeak propensity with respect to rotation speed.

Fig. 4. Friction–velocity curve.
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Re(l)40, where these modes will be referred to as the squeak modes. It is seen that the real parts of eigenvalues are highly
dependent on the sliding speed, where some of real parts increase with the decrease of rotation speed, but the others do
not. Near the zero speed, all real parts drop. These rotation effects are strongly attributed to the negative slope of the
velocity dependent friction coefficient and the radial slip perpendicular to the rotation direction. It is well described in
[11–13] in the application of a disc brake squeal. It should be noted that the radial dissipative effect in the linearized
equations of motion (27) comes from the linearization of Eq. (10). As O goes to zero, the linear term of the linearized
friction force in Eq. (10) vanishes and system variables become nonlinear. Therefore, the nonlinear analysis should be
adopted for investigating the dynamic behavior on the verge of zero rotation speed. It may be referred to the article [10]
presenting the nonlinear behavior in brake squeal.
Fig. 6. Stability boundary with respect to rotation speed and effective radius.

Fig. 7. Stability boundary with respect to rotation speed and axial load.

Fig. 8. Stability boundary with respect to rotation speed and contact location.
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For the parametric stability analysis, several system parameters are used in the eigenvalue sensitivity analysis. The
effective radius, axial load and contact locations are chosen for the parameters of the following sensitivity analysis
associated with rotation speed variation. Fig. 6 demonstrates that the increase of the effective radius can stabilize the
system over the broad rotation speed range in the manner that there is an upper bound of the dynamic instability over the
rotation speeds. Also, it is found that there is an lower bound of the axial load for the unstable regime as in Fig. 7. The
increase of the axial load destabilizes the system, particularly in the low speed region. Similarly, the dynamic instability is
shown to be sensitive to the contact location (or the location of screw nut) and its propensity reaches maximum over the
broad speed range when the screw nut is located at the center of the lead screw as illustrated in Fig. 8. It is noted that the
stabilization at the very low speed in Fig. 6–8 is due to the radial slip dissipation as explained in relation to Fig. 5.
Fig. 9. Stability boundary with respect to axial load and effective radius at O¼ 20 rad=s�.

Fig. 10. Stability boundary with respect to axial load and contact location at O¼ 20 rad=s.

Fig. 11. Squeak frequencies with respect to rotation speed, thick line: Re(l)40.
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In some mechanical applications such as a powered automotive seat adjuster, the rotation speed is a fixed value during
operation. For a given rotation speed, the stability boundary is determined through the eigenvalue sensitivity analysis as
the following. Fig. 9 shows that the decrease of the effective radius and the increase of the axial load can contribute to the
system destabilization for a given rotation speed. Besides, Fig. 10 demonstrates that the change of contact location can
influence the squeak propensity as described in Fig. 8.

In order to determine the squeak modes, the unstable frequencies with the positive real parts are identified on the
speed–frequency plot as demonstrated in Fig. 11. The mode shapes corresponding to the squeak frequencies are the first
and second bending modes of the lead screw. Therefore, it is important to note that the squeak noise of the lead screw
system can be induced by the bending vibration modes.

4. Conclusions and discussion

The mathematical screw squeak model has been constructed through the 3D contact kinematics and the assumed mode
method. The friction force vector is defined by the relative velocity vector on the contact thread between the rotating and
translating lead screw and the nut located at a given axial position of the lead screw. The linearized friction-coupled
equations of motion provide the stability boundaries with respect to system design parameters.

In the stability analysis, squeak propensity is found to be highly dependent on the sliding speed. The lead screw system
is prone to be stable at high and very low speeds, but unstable at moderate speeds. This is due to the dependency of
negative friction–velocity slope to the sliding speed and the radial slip dissipation. Most of all, the negative friction–
velocity slope takes an essential role on generating squeak noise in the analysis. It is shown that squeak propensity can be
effectively controlled by system design parameters such as axial load, screw radius and contact location.

For the given system parameters in Table 1, the first and second bending modes are seen to be squeak modes at a
certain range of rotation speed. The ensuing parametric stability results, therefore, are related to the sensitivity of the
stability to these transverse vibration modes. It implies that the stability analysis for the purpose of squeak reduction
design should be performed on the basis of modal stability criterion with respect to system design parameters.
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Appendix A. The matrices of the linearized equations of motion

C¼ 2xn � diagðonÞ, (A.1)

G¼ 2rO
Z L

0

Z 2p

0

Z R

0
ð�½Fx

i F
y
j �þ½F

y
i F

x
j �Þr dr dydz, (A.2)

W1 ¼
moFz

aR

Z aoþa

ao

siny cosy cos2 b½Fx
i F

x
j ��ðcos2 yþsin2 y sin2 bÞ½Fx

i F
y
j �þðsin2 yþcos2 sin2 bÞ½Fy

i F
x
j �

n
�siny cosy cos2 b½Fy

i F
y
j �

o
dy, (A.3)

W2 ¼
moFz

a

Z aoþa

ao

�cosy½Fx
i F

y
j ��siny½Fy

i F
y
j �þcosy sin2 b½Fy

i F
x
j �þsiny sin2 b½Fy

i F
y
j �

n o
dy, (A.4)

W3 ¼
moFz

ROa

Z aoþa

ao

ðcos2 yþsin2y sin2 bÞ½Fx
i F

x
j ��siny cosy cos2 b½Fx

i F
y
j ��siny cosy sin2 b½Fy

i F
x
j �þcos2 ysin2 b½Fy

i F
y
j �

n
þsin2 b½Fy

i F
y
j �

o
dy, (A.5)

W4 ¼
moFz sin2 b

Oa

Z aoþa

ao

�siny½Fx
i F

y
j �þcosy½Fy

i F
y
j ��siny½Fy

i F
x
j �þcosy½Fy

i F
y
j �

n o
dy, (A.6)

W5q ¼
FzOg
a ð1�tan2 bÞ

Z aoþa

ao

�siny cosy½Fx
i F

x
j �þcosy siny½Fy

i F
y
j ��sin2 y½Fx

i F
y
j �þcos2 y½Fy

i F
x
j �þR cosy½Fy

i F
x
j �

n
þR siny½Fy

i F
y
j �

o
dy, (A.7)

W5 _q ¼
Fzg
a ð1�tan2 bÞ

Z ao þa

ao

�sin2 y½Fx
i F

x
j �þcos2 y½Fy

i F
y
j ��cosy siny½Fx

i F
y
j �þcosy siny½Fy

i F
x
j �þR siny½Fy

i F
x
j �

n
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þR cosy½Fy
i F

y
j ��R sin y½Fx

i F
y
j �þR cosy½Fy

i F
y
j �þR2½Fy

i F
y
j �

o
dy, (A.8)

where

ao ¼ zo=ðR tanbÞ, (A.9)

mo ¼ mjVc ¼ 0, (A.10)

g¼�ðms�mkÞdexpð�dRO=cosbÞcosb: (A.11)
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